Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Insights Imaging ; 15(1): 114, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38734997

RESUMEN

OBJECTIVES: Liver transient elastography (TE) has been endorsed by the WHO as the first-line diagnostic tool for liver diseases. Although unreliable and invalid results caused by intercostal space (ICS)-associated factors (including excessive subcutaneous fat and a narrow ICS relative to the transducer size) and operator inexperience are not uncommon, no standard guidelines for ideal probe placement are currently available. Herein, we conducted a prospective observational study to identify an ideal measurement site and respiratory condition for TE by characterizing anatomical and biomechanical properties of the ICSs using ultrasound B-mode and elasticity imaging. METHODS: Intercostal ultrasound was performed pointwise at four specific sites in 59 patients to simultaneously measure the width, stiffness, and skin‒liver capsule distance (SCD) of the ICSs over the liver, under end-inspiratory and end-expiratory conditions. Intersections between the 8th ICS and anterior axillary line, the 7th ICS and anterior axillary line, the 8th ICS and mid-axillary line, and the 7th ICS and mid-axillary line were defined as Sites 1 to 4, respectively. RESULTS: Results indicated that Sites 2 and 3 presented greater intercostal width; Sites 3 and 4 displayed lower intercostal stiffness; Sites 2 and 3 exhibited a shorter SCD. The ICSs were significantly wider and stiffer at end-inspiration. Additionally, the liver was more easily visualized at Sites 1 and 3. CONCLUSION: We recommend Site 3 for TE probe placement owing to its greater width, lower stiffness, and smaller abdominal wall thickness. Performing TE at end-inspiration is preferred to minimize transducer-rib interferences. This study paves the way toward a standardized TE examination procedure. CRITICAL RELEVANCE STATEMENT: A standardized measurement protocol for WHO-recommended liver TE was first established to improve the success and efficiency of the examination procedure. KEY POINTS: WHO-recommended TE is unreliable or fails due to intercostal space-related factors. The 8th intercostal space on the mid-axillary line and end-inspiration are recommended. This standardized protocol aids in handling challenging cases and simplifies operational procedures.

2.
J Pers Med ; 13(12)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38138870

RESUMEN

Given the high death rate caused by high-risk prostate cancer (PCa) (>40%) and the reliability issues associated with traditional prognostic markers, the purpose of this study is to investigate planning computed tomography (pCT)-based radiomics for the long-term prognostication of high-risk localized PCa patients who received whole pelvic radiotherapy (WPRT). This is a retrospective study with methods based on best practice procedures for radiomics research. Sixty-four patients were selected and randomly assigned to training (n = 45) and testing (n = 19) cohorts for radiomics model development with five major steps: pCT image acquisition using a Philips Big Bore CT simulator; multiple manual segmentations of clinical target volume for the prostate (CTVprostate) on the pCT images; feature extraction from the CTVprostate using PyRadiomics; feature selection for overfitting avoidance; and model development with three-fold cross-validation. The radiomics model and signature performances were evaluated based on the area under the receiver operating characteristic curve (AUC) as well as accuracy, sensitivity and specificity. This study's results show that our pCT-based radiomics model was able to predict the six-year progression-free survival of the high-risk localized PCa patients who received the WPRT with highly consistent performances (mean AUC: 0.76 (training) and 0.71 (testing)). These are comparable to findings of other similar studies including those using magnetic resonance imaging (MRI)-based radiomics. The accuracy, sensitivity and specificity of our radiomics signature that consisted of two texture features were 0.778, 0.833 and 0.556 (training) and 0.842, 0.867 and 0.750 (testing), respectively. Since CT is more readily available than MRI and is the standard-of-care modality for PCa WPRT planning, pCT-based radiomics could be used as a routine non-invasive approach to the prognostic prediction of WPRT treatment outcomes in high-risk localized PCa.

3.
Sci Rep ; 13(1): 18263, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880324

RESUMEN

Image perturbation is a promising technique to assess radiomic feature repeatability, but whether it can achieve the same effect as test-retest imaging on model reliability is unknown. This study aimed to compare radiomic model reliability based on repeatable features determined by the two methods using four different classifiers. A 191-patient public breast cancer dataset with 71 test-retest scans was used with pre-determined 117 training and 74 testing samples. We collected apparent diffusion coefficient images and manual tumor segmentations for radiomic feature extraction. Random translations, rotations, and contour randomizations were performed on the training images, and intra-class correlation coefficient (ICC) was used to filter high repeatable features. We evaluated model reliability in both internal generalizability and robustness, which were quantified by training and testing AUC and prediction ICC. Higher testing performance was found at higher feature ICC thresholds, but it dropped significantly at ICC = 0.95 for the test-retest model. Similar optimal reliability can be achieved with testing AUC = 0.7-0.8 and prediction ICC > 0.9 at the ICC threshold of 0.9. It is recommended to include feature repeatability analysis using image perturbation in any radiomic study when test-retest is not feasible, but care should be taken when deciding the optimal feature repeatability criteria.


Asunto(s)
Neoplasias de la Mama , Procesamiento de Imagen Asistido por Computador , Humanos , Femenino , Procesamiento de Imagen Asistido por Computador/métodos , Reproducibilidad de los Resultados , Imagen de Difusión por Resonancia Magnética , Neoplasias de la Mama/diagnóstico por imagen
4.
Radiol Med ; 128(7): 828-838, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37300736

RESUMEN

PURPOSE: This study aimed to discover intra-tumor heterogeneity signature and validate its predictive value for adjuvant chemotherapy (ACT) following concurrent chemoradiotherapy (CCRT) in locoregionally advanced nasopharyngeal carcinoma (LA-NPC). MATERIALS AND METHODS: 397 LA-NPC patients were retrospectively enrolled. Pre-treatment contrast-enhanced T1-weighted (CET1-w) MR images, clinical variables, and follow-up were retrospectively collected. We identified single predictive radiomic feature from primary gross tumor volume (GTVnp) and defined predicted subvolume by calculating voxel-wised feature mapping and within GTVnp. We independently validate predictive value of identified feature and associated predicted subvolume. RESULTS: Only one radiomic feature, gldm_DependenceVariance in 3 mm-sigma LoG-filtered image, was discovered as a signature. In the high-risk group determined by the signature, patients received CCRT + ACT achieved 3-year disease free survival (DFS) rate of 90% versus 57% (HR, 0.20; 95%CI, 0.05-0.94; P = 0.007) for CCRT alone. The multivariate analysis showed patients receiving CCRT + ACT had a HR of 0.21 (95%CI: 0.06-0.68, P = 0.009) for DFS compared to those receiving CCRT alone. The predictive value can also be generalized to the subvolume with multivariate HR of 0.27 (P = 0.017) for DFS. CONCLUSION: The signature with its heterogeneity mapping could be a reliable and explainable ACT decision-making tool in clinical practice.


Asunto(s)
Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/diagnóstico por imagen , Carcinoma Nasofaríngeo/tratamiento farmacológico , Neoplasias Nasofaríngeas/diagnóstico por imagen , Neoplasias Nasofaríngeas/tratamiento farmacológico , Estudios Retrospectivos , Cisplatino/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Quimioterapia Adyuvante/métodos , Quimioradioterapia/métodos
5.
Int J Radiat Oncol Biol Phys ; 117(2): 493-504, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37116591

RESUMEN

PURPOSE: The objective of this study was to develop a respiratory-correlated (RC) 4-dimensional (4D) imaging technique based on magnetic resonance fingerprinting (MRF) (RC-4DMRF) for liver tumor motion management in radiation therapy. METHODS AND MATERIALS: Thirteen patients with liver cancer were prospectively enrolled in this study. k-space MRF signals of the liver were acquired during free-breathing using the fast acquisition with steady-state precession sequence on a 3T scanner. The signals were binned into 8 respiratory phases based on respiratory surrogates, and interphase displacement vector fields were estimated using a phase-specific low-rank optimization method. Hereafter, the tissue property maps, including T1 and T2 relaxation times, and proton density, were reconstructed using a pyramid motion-compensated method that alternatively optimized interphase displacement vector fields and subspace images. To evaluate the efficacy of RC-4DMRF, amplitude motion differences and Pearson correlation coefficients were determined to assess measurement agreement in tumor motion between RC-4DMRF and cine magnetic resonance imaging (MRI); mean absolute percentage errors of the RC-4DMRF-derived tissue maps were calculated to reveal tissue quantification accuracy using digital human phantom; and tumor-to-liver contrast-to-noise ratio of RC-4DMRF images was compared with that of planning CT and contrast-enhanced MRI (CE-MRI) images. A paired Student t test was used for statistical significance analysis with a P value threshold of .05. RESULTS: RC-4DMRF achieved excellent agreement in motion measurement with cine MRI, yielding the mean (± standard deviation) Pearson correlation coefficients of 0.95 ± 0.05 and 0.93 ± 0.09 and amplitude motion differences of 1.48 ± 1.06 mm and 0.81 ± 0.64 mm in the superior-inferior and anterior-posterior directions, respectively. Moreover, RC-4DMRF achieved high accuracy in tissue property quantification, with mean absolute percentage errors of 8.8%, 9.6%, and 5.0% for T1, T2, and proton density, respectively. Notably, the tumor contrast-to-noise ratio in RC-4DMRI-derived T1 maps (6.41 ± 3.37) was found to be the highest among all tissue property maps, approximately equal to that of CE-MRI (6.96 ± 1.01, P = .862), and substantially higher than that of planning CT (2.91 ± 1.97, P = .048). CONCLUSIONS: RC-4DMRF demonstrated high accuracy in respiratory motion measurement and tissue properties quantification, potentially facilitating tumor motion management in liver radiation therapy.


Asunto(s)
Neoplasias Hepáticas , Protones , Humanos , Imagen por Resonancia Magnética/métodos , Movimiento (Física) , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/radioterapia , Respiración , Espectroscopía de Resonancia Magnética , Fantasmas de Imagen
6.
Cancers (Basel) ; 15(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36831445

RESUMEN

This study aims to investigate the association of pre-treatment multi-phasic MR-based radiomics and dosimetric features with treatment response to a novel sequential trans-arterial chemoembolization (TACE) plus stereotactic body radiotherapy (SBRT) plus immunotherapy regimen in unresectable Hepatocellular Carcinoma (HCC) sub-population. Twenty-six patients with unresectable HCC were retrospectively analyzed. Radiomic features were extracted from 42 lesions on arterial phase (AP) and portal-venous phase (PVP) MR images. Delta-phase (DeltaP) radiomic features were calculated as AP-to-PVP ratio. Dosimetric data of the tumor was extracted from dose-volume-histograms. A two-sided independent Mann-Whitney U test was used to assess the clinical association of each feature, and the classification performance of each significant independent feature was assessed using logistic regression. For the 3-month timepoint, four DeltaP-derived radiomics that characterize the temporal change in intratumoral randomness and uniformity were the only contributors to the treatment response association (p-value = 0.038-0.063, AUC = 0.690-0.766). For the 6-month timepoint, DeltaP-derived radiomic features (n = 4) maintained strong clinical associations with the treatment response (p-value = 0.047-0.070, AUC = 0.699-0.788), additional AP-derived radiomic features (n = 4) that reflect baseline tumoral arterial-enhanced signal pattern and tumor morphology (n = 1) that denotes initial tumor burden were shown to have strong associations with treatment response (p-value = 0.028-0.074, AUC = 0.719-0.773). This pilot study successfully demonstrated associations of pre-treatment multi-phasic MR-based radiomics with tumor response to the novel treatment regimen.

7.
Radiother Oncol ; 183: 109578, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36822357

RESUMEN

BACKGROUND AND PURPOSE: To investigate the radiomic feature (RF) repeatability via perturbation and its impact on cross-institutional prognostic model generalizability in Nasopharyngeal Carcinoma (NPC) patients. MATERIALS AND METHODS: 286 and 183 NPC patients from two institutions were included for model training and validation. Perturbations with random translations and rotations were applied to contrast-enhanced T1-weighted (CET1-w) MR images. RFs were extracted from primary tumor volume under a wide range of image filtering and discretization settings. RF repeatability was assessed by intraclass correlation coefficient (ICC), which was used to equally separate the RFs into low- and high-repeatable groups by the median value. After feature selection, multivariate Cox regression and Kaplan-Meier analysis were independently employed to develop and analyze prognostic models. Concordance index (C-index) and P-value from log-rank test were used to assess model performance. RESULTS: Most textural RFs from high-pass wavelet-filtered images were susceptible to image perturbations. It was more prominent when a smaller discretization bin number was used (e.g., 8, mean ICC = 0.69). Using high-repeatable RFs for model development yielded a significantly higher C-index (0.63) in the validation cohort than when only low-repeatable RFs were used (0.57, P = 0.024), suggesting higher model generalizability. Besides, significant risk stratification in the validation cohort was observed only when high-repeatable RFs were used (P < 0.001). CONCLUSION: Repeatability of RFs from high-pass wavelet-filtered CET1-w MR images of primary NPC tumor was poor, particularly when a smaller bin number was used. Exclusive use of high-repeatable RFs is suggested to safeguard model generalizability for wide-spreading clinical utilization.


Asunto(s)
Imagen por Resonancia Magnética , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/diagnóstico por imagen , Carcinoma Nasofaríngeo/patología , Pronóstico , Estimación de Kaplan-Meier , Imagen por Resonancia Magnética/métodos , Neoplasias Nasofaríngeas/diagnóstico por imagen , Neoplasias Nasofaríngeas/radioterapia , Neoplasias Nasofaríngeas/patología
8.
Proc Natl Acad Sci U S A ; 119(42): e2202871119, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36215506

RESUMEN

COVID-19 is the latest zoonotic RNA virus epidemic of concern. Learning how it began and spread will help to determine how to reduce the risk of future events. We review major RNA virus outbreaks since 1967 to identify common features and opportunities to prevent emergence, including ancestral viral origins in birds, bats, and other mammals; animal reservoirs and intermediate hosts; and pathways for zoonotic spillover and community spread, leading to local, regional, or international outbreaks. The increasing scientific evidence concerning the origins of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is most consistent with a zoonotic origin and a spillover pathway from wildlife to people via wildlife farming and the wildlife trade. We apply what we know about these outbreaks to identify relevant, feasible, and implementable interventions. We identify three primary targets for pandemic prevention and preparedness: first, smart surveillance coupled with epidemiological risk assessment across wildlife-livestock-human (One Health) spillover interfaces; second, research to enhance pandemic preparedness and expedite development of vaccines and therapeutics; and third, strategies to reduce underlying drivers of spillover risk and spread and reduce the influence of misinformation. For all three, continued efforts to improve and integrate biosafety and biosecurity with the implementation of a One Health approach are essential. We discuss new models to address the challenges of creating an inclusive and effective governance structure, with the necessary stable funding for cross-disciplinary collaborative research. Finally, we offer recommendations for feasible actions to close the knowledge gaps across the One Health continuum and improve preparedness and response in the future.


Asunto(s)
COVID-19 , Quirópteros , Salud Única , Animales , Animales Salvajes , COVID-19/epidemiología , COVID-19/prevención & control , Humanos , Pandemias/prevención & control , SARS-CoV-2 , Zoonosis/epidemiología , Zoonosis/prevención & control
9.
Front Pharmacol ; 13: 971849, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36199694

RESUMEN

Purpose: This study investigates the impact of lung function on radiation pneumonitis prediction using a dual-omics analysis method. Methods: We retrospectively collected data of 126 stage III lung cancer patients treated with chemo-radiotherapy using intensity-modulated radiotherapy, including pre-treatment planning CT images, radiotherapy dose distribution, and contours of organs and structures. Lung perfusion functional images were generated using a previously developed deep learning method. The whole lung (WL) volume was divided into function-wise lung (FWL) regions based on the lung perfusion functional images. A total of 5,474 radiomics features and 213 dose features (including dosiomics features and dose-volume histogram factors) were extracted from the FWL and WL regions, respectively. The radiomics features (R), dose features (D), and combined dual-omics features (RD) were used for the analysis in each lung region of WL and FWL, labeled as WL-R, WL-D, WL-RD, FWL-R, FWL-D, and FWL-RD. The feature selection was carried out using ANOVA, followed by a statistical F-test and Pearson correlation test. Thirty times train-test splits were used to evaluate the predictability of each group. The overall average area under the receiver operating characteristic curve (AUC), accuracy, precision, recall, and f1-score were calculated to assess the performance of each group. Results: The FWL-RD achieved a significantly higher average AUC than the WL-RD group in the training (FWL-RD: 0.927 ± 0.031, WL-RD: 0.849 ± 0.064) and testing cohorts (FWL-RD: 0.885 ± 0.028, WL-RD: 0.762 ± 0.053, p < 0.001). When using radiomics features only, the FWL-R group yielded a better classification result than the model trained with WL-R features in the training (FWL-R: 0.919 ± 0.036, WL-R: 0.820 ± 0.052) and testing cohorts (FWL-R: 0.862 ± 0.028, WL-R: 0.750 ± 0.057, p < 0.001). The FWL-D group obtained an average AUC of 0.782 ± 0.032, obtaining a better classification performance than the WL-D feature-based model of 0.740 ± 0.028 in the training cohort, while no significant difference was observed in the testing cohort (FWL-D: 0.725 ± 0.064, WL-D: 0.710 ± 0.068, p = 0.54). Conclusion: The dual-omics features from different lung functional regions can improve the prediction of radiation pneumonitis for lung cancer patients under IMRT treatment. This function-wise dual-omics analysis method holds great promise to improve the prediction of radiation pneumonitis for lung cancer patients.

11.
Front Oncol ; 12: 883516, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35847874

RESUMEN

Purpose: Deep learning model has shown the feasibility of providing spatial lung perfusion information based on CT images. However, the performance of this method on lung cancer patients is yet to be investigated. This study aims to develop a transfer learning framework to evaluate the deep learning based CT-to-perfusion mapping method specifically on lung cancer patients. Methods: SPECT/CT perfusion scans of 33 lung cancer patients and 137 non-cancer patients were retrospectively collected from two hospitals. To adapt the deep learning model on lung cancer patients, a transfer learning framework was developed to utilize the features learned from the non-cancer patients. These images were processed to extract features from three-dimensional CT images and synthesize the corresponding CT-based perfusion images. A pre-trained model was first developed using a dataset of patients with lung diseases other than lung cancer, and subsequently fine-tuned specifically on lung cancer patients under three-fold cross-validation. A multi-level evaluation was performed between the CT-based perfusion images and ground-truth SPECT perfusion images in aspects of voxel-wise correlation using Spearman's correlation coefficient (R), function-wise similarity using Dice Similarity Coefficient (DSC), and lobe-wise agreement using mean perfusion value for each lobe of the lungs. Results: The fine-tuned model yielded a high voxel-wise correlation (0.8142 ± 0.0669) and outperformed the pre-trained model by approximately 8%. Evaluation of function-wise similarity indicated an average DSC value of 0.8112 ± 0.0484 (range: 0.6460-0.8984) for high-functional lungs and 0.8137 ± 0.0414 (range: 0.6743-0.8902) for low-functional lungs. Among the 33 lung cancer patients, high DSC values of greater than 0.7 were achieved for high functional volumes in 32 patients and low functional volumes in all patients. The correlations of the mean perfusion value on the left upper lobe, left lower lobe, right upper lobe, right middle lobe, and right lower lobe were 0.7314, 0.7134, 0.5108, 0.4765, and 0.7618, respectively. Conclusion: For lung cancer patients, the CT-based perfusion images synthesized by the transfer learning framework indicated a strong voxel-wise correlation and function-wise similarity with the SPECT perfusion images. This suggests the great potential of the deep learning method in providing regional-based functional information for functional lung avoidance radiation therapy.

12.
Front Oncol ; 12: 816678, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35280780

RESUMEN

Purpose: Tumor delineation plays a critical role in radiotherapy for hepatocellular carcinoma (HCC) patients. The incorporation of MRI might improve the ability to correctly identify tumor boundaries and delineation consistency. In this study, we evaluated a novel Multisource Adaptive MRI Fusion (MAMF) method in HCC patients for tumor delineation. Methods: Ten patients with HCC were included in this study retrospectively. Contrast-enhanced T1-weighted MRI at portal-venous phase (T1WPP), contrast-enhanced T1-weighted MRI at 19-min delayed phase (T1WDP), T2-weighted (T2W), and diffusion-weighted MRI (DWI) were acquired on a 3T MRI scanner and imported to in-house-developed MAMF software to generate synthetic MR fusion images. The original multi-contrast MR image sets were registered to planning CT by deformable image registration (DIR) using MIM. Four observers independently delineated gross tumor volumes (GTVs) on the planning CT, four original MR image sets, and the fused MRI for all patients. Tumor contrast-to-noise ratio (CNR) and Dice similarity coefficient (DSC) of the GTVs between each observer and a reference observer were measured on the six image sets. Inter-observer and inter-patient mean, SD, and coefficient of variation (CV) of the DSC were evaluated. Results: Fused MRI showed the highest tumor CNR compared to planning CT and original MR sets in the ten patients. The mean ± SD tumor CNR was 0.72 ± 0.73, 3.66 ± 2.96, 4.13 ± 3.98, 4.10 ± 3.17, 5.25 ± 2.44, and 9.82 ± 4.19 for CT, T1WPP, T2W, DWI, T1WDP, and fused MRI, respectively. Fused MRI has the minimum inter-observer and inter-patient variations as compared to original MR sets and planning CT sets. GTV delineation inter-observer mean DSC across the ten patients was 0.81 ± 0.09, 0.85 ± 0.08, 0.88 ± 0.04, 0.89 ± 0.08, 0.90 ± 0.04, and 0.95 ± 0.02 for planning CT, T1WPP, T2W, DWI, T1WDP, and fused MRI, respectively. The patient mean inter-observer CV of DSC was 3.3%, 3.2%, 1.7%, 2.6%, 1.5%, and 0.9% for planning CT, T1WPP, T2W, DWI, T1WDP, and fused MRI, respectively. Conclusion: The results demonstrated that the fused MRI generated using the MAMF method can enhance tumor CNR and improve inter-observer consistency of GTV delineation in HCC as compared to planning CT and four commonly used MR image sets (T1WPP, T1WDP, T2W, and DWI). The MAMF method holds great promise in MRI applications in HCC radiotherapy treatment planning.

13.
Life (Basel) ; 12(2)2022 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-35207528

RESUMEN

Significant lymph node shrinkage is common in patients with nasopharyngeal carcinoma (NPC) throughout radiotherapy (RT) treatment, causing ill-fitted thermoplastic masks (IfTMs). To deal with this, an ad hoc adaptive radiotherapy (ART) may be required to ensure accurate and safe radiation delivery and to maintain treatment efficacy. Presently, the entire procedure for evaluating an eligible ART candidate is time-consuming, resource-demanding, and highly inefficient. In the artificial intelligence paradigm, the pre-treatment identification of NPC patients at risk for IfTMs has become greatly demanding for achieving efficient ART eligibility screening, while no relevant studies have been reported. Hence, we aimed to investigate the capability of computed tomography (CT)-based neck nodal radiomics for predicting IfTM-triggered ART events in NPC patients via a multi-center setting. Contrast-enhanced CT and the clinical data of 124 and 58 NPC patients from Queen Elizabeth Hospital (QEH) and Queen Mary Hospital (QMH), respectively, were retrospectively analyzed. Radiomic (R), clinical (C), and combined (RC) models were developed using the ridge algorithm in the QEH cohort and evaluated in the QMH cohort using the median area under the receiver operating characteristics curve (AUC). Delong's test was employed for model comparison. Model performance was further assessed on 1000 replicates in both cohorts separately via bootstrapping. The R model yielded the highest "corrected" AUC of 0.784 (BCa 95%CI: 0.673-0.859) and 0.723 (BCa 95%CI: 0.534-0.859) in the QEH and QMH cohort following bootstrapping, respectively. Delong's test indicated that the R model performed significantly better than the C model in the QMH cohort (p < 0.0001), while demonstrating no significant difference compared to the RC model (p = 0.5773). To conclude, CT-based neck nodal radiomics was capable of predicting IfTM-triggered ART events in NPC patients in this multi-center study, outperforming the traditional clinical model. The findings of this study provide valuable insights for future study into developing an effective screening strategy for ART eligibility in NPC patients in the long run, ultimately alleviating the workload of clinical practitioners, streamlining ART procedural efficiency in clinics, and achieving personalized RT for NPC patients in the future.

14.
Quant Imaging Med Surg ; 11(12): 4807-4819, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34888191

RESUMEN

BACKGROUND: Bone suppression of chest X-ray holds the potential to improve the accuracy of target localization in image-guided radiation therapy (IGRT). However, the training dataset for bone suppression is limited because of the scarcity of bone-free radiographs. This study aims to develop a deep learning-based bone suppression method using CT-derived features to reduce the reliance on the bone-free dataset. METHODS: In this study, 59 high-resolution lung CT scans were processed to generate the lung digital radiographs (DRs), bone DRs, and bone-free DRs, for the training and internal validation of the proposed cascade convolutional neural network (CCNN). A three-stage image processing framework (CT segmentation, DR simulation, and feature expansion) was developed to expand simulated lung DRs with different weightings of bone intensity. The CCNN consists of a bone detection network and a bone suppression network. In external validation, the trained CCNN was evaluated using 30 chest radiographs. The synthesized bone-suppressed radiographs were compared with the bone-suppressed reference in terms of peak signal-to-noise ratio (PSNR), mean absolute error (MAE), structural similarity index measure (SSIM), and Spearman's correlation coefficient. Furthermore, the effectiveness of the proposed feature expansion method and CCNN model were assessed via the ablation experiment and replacement experiment, respectively. RESULTS: Evaluation on real chest radiographs showed that the bone-suppressed chest radiographs closely matched with the bone-suppressed reference, achieving an accuracy of MAE =0.0087±0.0030, SSIM =0.8458±0.0317, correlation of 0.9554±0.0170, and PNSR of 20.86±1.60. After removing the feature expansion from the CCNN model, the performance decreased in terms of MAE (0.0294±0.0093, -237.9%), SSIM (0.7747±0.0.0416, -8.4%), correlation (0.8772±0.0271, -8.2%), and PSNR (15.53±1.42, -25.5%) metrics. CONCLUSIONS: We successfully demonstrated a novel deep learning-based bone suppression method using CT-derived features to reduce the reliance on the bone-free dataset. Implementation of the feature expansion procedures resulted in a remarkable reinforcement of the model performance. For the application of target localization in IGRT, the clinical testing of the proposed method in the context of radiation therapy is a necessary procedure to move from theory into practice.

17.
Front Oncol ; 11: 644703, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33842356

RESUMEN

Functional lung avoidance radiation therapy aims to minimize dose delivery to the normal lung tissue while favoring dose deposition in the defective lung tissue based on the regional function information. However, the clinical acquisition of pulmonary functional images is resource-demanding, inconvenient, and technically challenging. This study aims to investigate the deep learning-based lung functional image synthesis from the CT domain. Forty-two pulmonary macro-aggregated albumin SPECT/CT perfusion scans were retrospectively collected from the hospital. A deep learning-based framework (including image preparation, image processing, and proposed convolutional neural network) was adopted to extract features from 3D CT images and synthesize perfusion as estimations of regional lung function. Ablation experiments were performed to assess the effects of each framework component by removing each element of the framework and analyzing the testing performances. Major results showed that the removal of the CT contrast enhancement component in the image processing resulted in the largest drop in framework performance, compared to the optimal performance (~12%). In the CNN part, all the three components (residual module, ROI attention, and skip attention) were approximately equally important to the framework performance; removing one of them resulted in a 3-5% decline in performance. The proposed CNN improved ~4% overall performance and ~350% computational efficiency, compared to the U-Net model. The deep convolutional neural network, in conjunction with image processing for feature enhancement, is capable of feature extraction from CT images for pulmonary perfusion synthesis. In the proposed framework, image processing, especially CT contrast enhancement, plays a crucial role in the perfusion synthesis. This CTPM framework provides insights for relevant research studies in the future and enables other researchers to leverage for the development of optimized CNN models for functional lung avoidance radiation therapy.

18.
Front Oncol ; 11: 792024, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35174068

RESUMEN

PURPOSE: To investigate the role of different multi-organ omics-based prediction models for pre-treatment prediction of Adaptive Radiotherapy (ART) eligibility in patients with nasopharyngeal carcinoma (NPC). METHODS AND MATERIALS: Pre-treatment contrast-enhanced computed tomographic and magnetic resonance images, radiotherapy dose and contour data of 135 NPC patients treated at Hong Kong Queen Elizabeth Hospital were retrospectively analyzed for extraction of multi-omics features, namely Radiomics (R), Morphology (M), Dosiomics (D), and Contouromics (C), from a total of eight organ structures. During model development, patient cohort was divided into a training set and a hold-out test set in a ratio of 7 to 3 via 20 iterations. Four single-omics models (R, M, D, C) and four multi-omics models (RD, RC, RM, RMDC) were developed on the training data using Ridge and Multi-Kernel Learning (MKL) algorithm, respectively, under 10-fold cross validation, and evaluated on hold-out test data using average area under the receiver-operator-characteristics curve (AUC). The best-performing single-omics model was first determined by comparing the AUC distribution across the 20 iterations among the four single-omics models using two-sided student t-test, which was then retrained using MKL algorithm for a fair comparison with the four multi-omics models. RESULTS: The R model significantly outperformed all other three single-omics models (all p-value<0.0001), achieving an average AUC of 0.942 (95%CI: 0.938-0.946) and 0.918 (95%CI: 0.903-0.933) in training and hold-out test set, respectively. When trained with MKL, the R model (R_MKL) yielded an increased AUC of 0.984 (95%CI: 0.981-0.988) and 0.927 (95%CI: 0.905-0.948) in training and hold-out test set respectively, while demonstrating no significant difference as compared to all studied multi-omics models in the hold-out test sets. Intriguingly, Radiomic features accounted for the majority of the final selected features, ranging from 64% to 94%, in all the studied multi-omics models. CONCLUSIONS: Among all the studied models, the Radiomic model was found to play a dominant role for ART eligibility in NPC patients, and Radiomic features accounted for the largest proportion of features in all the multi-omics models.

20.
Med Phys ; 47(4): 1750-1762, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32012292

RESUMEN

PURPOSE: To develop and evaluate a novel method for pseudo-CT generation from multi-parametric MR images using multi-channel multi-path generative adversarial network (MCMP-GAN). METHODS: Pre- and post-contrast T1-weighted (T1-w), T2-weighted (T2-w) MRI, and treatment planning CT images of 32 nasopharyngeal carcinoma (NPC) patients were employed to train a pixel-to-pixel MCMP-GAN. The network was developed based on a 5-level Residual U-Net (ResU-Net) with the channel-based independent feature extraction network to generate pseudo-CT images from multi-parametric MR images. The discriminator with five convolutional layers was added to distinguish between the real CT and pseudo-CT images, improving the nonlinearity and prediction accuracy of the model. Eightfold cross validation was implemented to validate the proposed MCMP-GAN. The pseudo-CT images were evaluated against the corresponding planning CT images based on mean absolute error (MAE), peak signal-to-noise ratio (PSNR), Dice similarity coefficient (DSC), and Structural similarity index (SSIM). Similar comparisons were also performed against the multi-channel single-path GAN (MCSP-GAN), the single-channel single-path GAN (SCSP-GAN). RESULTS: It took approximately 20 h to train the MCMP-GAN model on a Quadro P6000, and less than 10 s to generate all pseudo-CT images for the subjects in the test set. The average head MAE between pseudo-CT and planning CT was 75.7 ± 14.6 Hounsfield Units (HU) for MCMP-GAN, significantly (P-values < 0.05) lower than that for MCSP-GAN (79.2 ± 13.0 HU) and SCSP-GAN (85.8 ± 14.3 HU). For bone only, the MCMP-GAN yielded a smaller mean MAE (194.6 ± 38.9 HU) than MCSP-GAN (203.7 ± 33.1 HU), SCSP-GAN (227.0 ± 36.7 HU). The average PSNR of MCMP-GAN (29.1 ± 1.6) was found to be higher than that of MCSP-GAN (28.8 ± 1.2) and SCSP-GAN (28.2 ± 1.3). In terms of metrics for image similarity, MCMP-GAN achieved the highest SSIM (0.92 ± 0.02) but did not show significantly improved bone DSC results in comparison with MCSP-GAN. CONCLUSIONS: We developed a novel multi-channel GAN approach for generating pseudo-CT from multi-parametric MR images. Our preliminary results in NPC patients showed that the MCMP-GAN method performed apparently superior to the U-Net-GAN and SCSP-GAN, and slightly better than MCSP-GAN.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Carcinoma Nasofaríngeo/diagnóstico por imagen , Redes Neurales de la Computación , Tomografía Computarizada por Rayos X , Humanos , Carcinoma Nasofaríngeo/patología , Carga Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...